Linear Algebra II
07/04/2014, Monday, 9:00-12:00

1 (1045 =15 pts) Gram-Schmidt process

Consider the vector space R* with the inner product

(x,y) = aTy.
Let S C R* be the subspace given by
1 1 1
1 1 0
S = span o lolo 1 o
1 0 -1

(a) Apply the Gram-Schmidt process to obtain an orthonormal basis for S.

(b) Find the closest element in the subspace S to the vector

Q o" o Q

where a and b are real numbers.

REQUIRED KNOWLEDGE: inner product, Gram-Schmidt process, least squares

SOLUTION:
(1a): Let
xr1 =

, X9 = , and xz3 =

— ===
OO ==
_ o o -



By applying the Gram-Schmidt process, we obtain:
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(1b): The closest element in S to x can be found by projection:
p:<.13,U1>'U1+<$,U2>'U2+<$,U3>'U3.
Thus, we have
1 1 1
1 1 1 1 1 1
p=7atbtbta) |||+ (atb=b-a)| |+ a=btb-a)| || =3
1 -1 -1

—




2 (15 pts) Cayley-Hamilton theorem

Consider the matrix
9 —6
M= {5 - 3} .
By using the Cayley-Hamilton theorem, find a and b such that

M?® = aM + bl.

REQUIRED KNOWLEDGE: Cayley-Hamilton theorem

SOLUTION:

The characteristic polynomial of M is given by

9—-2A —6

det(M—)\I)—det<[ 5 g

D =(9-N(=3-X)+30=X1—6X+3.

It follows from Cayley-Hamilton theorem that
M?*—6M + 31 = 0.

Then, we have
M? =6M — 31 = 3(2M —I).

This results in
M? = MM? =3M(2M —1I) = 3(2M?* — M) = 3(2(6 M — 3I) — M) = 3(11M — 61).
Therefore, we obtain
M?® = M?M? = 9(2M — I)(11M — 61)
= 9(22M?* — 23M + 61)

=9(66(2M — I) — 23M + 61)
=9(132M — 661 — 23M + 61) = 9(109M — 60I) = 981 M — 5401.

As such, a = 981 and b = —540.




3 (2+8+5=15pts) Singular value decomposition

Consider the matrix

(a) Find the singular values of M.
(b) Find a singular value decomposition for M.

(c) Find the best rank 2 approximation of M.

REQUIRED KNOWLEDGE: singular value decomposition, lower rank approximations

SOLUTION:
(3a): Note that
4 0 0
MM =10 16 0
0 0 36

Then, the eigenvalues of M” M are given by

A1 =36, A =16, and M3=4
and hence the singular values by

01=6, o0o,=4, and o3=2.

(8b): Three eigenvectors of M7 M corresponding to the eigenvalues A;, Ao, and A3 can be given
by

0 0 1
vi= 10|, wvo= |1, and w3= |0
1 0 0

As such, we have

Note that the rank of M is equal to the number of nonzero singular values. Thus, r = rank(M) = 3.
By using the formula

for ¢+ = 1,2, 3, we obtain
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The last column vector of the matrix U can be found by looking at the null space of M7T:

1 -1 1 1
2 2 -2 2|y=0.
3 3 3 -3

By row operations, we obtain

1 -1 1
0 1 -1 O0|ly=0
0 0 —1]
This yields, for instance,
-1
!
Y7
1
Thus, we get
-1
1] 1
U3—§ 1
1
Finally, the SVD can be given by:
1 2 3 1 1 1 -1{[6 0 O
—23_}11—110408(1)(1)
1 -2 3|~ L -1 1 1o 0 2|} o 4
1 2 -3 -1 1 1 110 0 O
(3c): The best rank 2 approximation can be obtained as follows:
1 1 1 —-1((6 0 O
M*l 1 1 -1 10 4 0 8 (1) (1)
2] 1 -1 1 110 0 0O 1 0 0
-1 1 1 1|0 0 0
5020 0 01
3 20
= 010
3 20 1 0 0
-3 2 0]
[0 2 3]
10 2 3
|0 =2 3
0 2 3]




4 (5+5+5=15pts) Eigenvalues and singular values

(a) Let A be a square matrix. Show that

det(e?) = "™,

(b) Let B be an orthogonal matrix. Find out the singular values of B.

(c) Let C' and D be n x n matrices. Suppose that C is orthogonal. Find out the relationship
between the singular values of D and those of CD.

REQUIRED KNOWLEDGE: eigenvalues, orthogonal matrices and singular values

SOLUTION:
(4a): Let (A, x) be an eigenpair of A, that is

Ax = Ax.
Note that
AF g = Neg.
Thus, we have
A A2 AN
eAx:([+7+7+...)m:(1+—+—+~-~)x:e>‘x.

1 2 1 2

In other words, if ) is an eigenvalue of A then e* is an eigenvalue of e. Since the determinant of
a matrix equals to the product of eigenvalues, we have

det(e?) = eMetz ... etn
where )\; for i = 1,2,...,n are the eigenvalues of A. Hence, we have

det(eA) _ e)\1+>\2+"'+)\n .

Since the sum of the eigenvalues of a matrix equals to its trace, we get

det(eA) _ e)\1+/\2+»~~+)\n — etr(A)

(4b): Approach 1: The singular values of B are the square roots of the eigenvalues of BT B.
Since B is orthogonal, BT B = I. Hence, all singular values of B are equal to 1.

Approach 2: Since B is an orthogonal matrix, we have the SVD
B=Uxv"

where U = B, and X =V = I. As such, singular values of B are all 1.

(4c): Approach 1: The singular values of C'D are the square roots of the eigenvalues of
(CD)TCD. Note that

(cp)'cp =DTcTcp =D"D
where the last equality follows from the fact that C' is orthogonal. As such, the singular values of
CD and D are the same.

Approach 2: Let
D=Uxv"

be an SVD of D. Then, we have
cD=cuxvT. (%)

Since both C' and U are orthogonal, so is their product CD. Thus, (x) is an SVD for CD. Con-
sequently, D and C'D have the same singular values.




5 (10+5 =15 pts) Positive definiteness

(a) Consider the function
fz,y) = 6ay® — 22° — 3y*.

Find the stationary points of f and determine whether its stationary points are local mini-
mum/maximum or saddle points.

(b) Let

2 1
M=1|1 2
a 1

N = Q

where a is a real number. Determine all values of a for which M is

(i) positive definite.

(ii) negative definite.

REQUIRED KNOWLEDGE: stationary points, positive definiteness

SOLUTION:

(5a): In order to find the stationary points, we need the partial derivatives:
fo =6y* — 62> and fy =122y — 1243,

Then, (Z, ) is a stationary point if and only if

—2

—-2=0
zg—17° =0.

The second yields i = 0 or z = ¢2. If § = 0, then we get from the first £ = 0. Hence,

(T1,91) = (0,0)

is a stationary point. If z = %2, then we get * = §? from the first. This holds if and only if
g € {—1,0,1}. Thus, we obtain two more stationary points

(Z2,92) = (1,—-1) and (Zs3,y3) = (1,1).
To determine the character of these points, we need the second order partial derivatives:
fow = =122, fo, =12y, and f,, = 12z — 36y°.
For the stationary point (Z1,%1) = (0,0), we have

o B [fm fmy} B [129; 12y } B [0 o}
0,0) — = 2 = .
OO = fow fuu ©0.0) 12y 122 -36y°| o, [0 0

Since this matrix has only zero eigenvalues, we cannot determine the nature of the corresponding
stationary point.

For the stationary point (Z2,32) = (1, —1), we have
foe fao ] [—1235 12y ] [—12 —12} [1 1]
Hy )= Y = = =-12 .
(1,=1) [fxy ol -1y 129 122367, ) [-12 -2 1 2
.. . R I B
Note that the characteristic equation for the matrix [1 2} is given by

A=1DA=2)—1=X—-3)1=0.



Thus, we find the roots as

3++6
TR

Note that both these numbers are positive. Since —12); 5 are the eigenvalues of the Hessian, it is
negative definite. This means the corresponding stationary point is a local maximum.

A2 =

For the stationary point (Z3,%3) = (1,1), we have
foz  Ja } [12x 12y ] {12 12] { 1 1}
Hey = Y = = =-12 :
1) {fw Fodony  [12y 1203642 ) 12 —24 -1 2

. . . 1 -1 .
Note that the characteristic equation for the matrix [_1 2} is exactly the same as for the

.11 . . . . . .
matrix [1 2} . As such, H(y ) is negative definite. Therefore, the corresponding stationary point

is a local maximum.

(5b)(i): A symmetric matrix is positive definite if and only if all its leading principal minors
are positive. Note that the leading principal minors of M are given by:

2 1 a
det(2) =2, det (ﬁ ;D =4-1=3, and det| [1 2 1| | =8+ata—2a*-2-2 = 4+2a—2a>.
a 1 2

Then, the matrix M is positive definite if and only if

a®—a—2<0.

Since a®?—a—2 = (a+1)(a—2), we can conclude that M is positive definite if and only if -1 < a < 2.

(5b)(ii): The matrix M is negative definite if and only if —M is positive definite. Since the
first leading principal minor of —M is —2, there are no values of a and b rendering M negative
definite.




6 (2+3+10=15pts) Jordan canonical form

Consider the matrix

-1 1 0
M=]-1 0 1
-1 0 1

(a) Find the eigenvalues of M.
(b) Is M diagonalizable? Why?

(¢) Put M into the Jordan canonical form.

REQUIRED KNOWLEDGE: eigenvalues/vectors, diagonalization, Jordan canonical form

SOLUTION:

(6a): Charateristic polynomial of M can be found as

—1-X 1 0
det(M —X) =det (| —1 - 1
-1 0 1-2X
=A1+N)1 =N —1+1-2A
=A1-X}) -\
=A1 =X —1)= -\

Therefore, M has only zero eigenvalues.

(6b): The matrix M is diagonalizable if and only if it has 3 linearly independent eigenvectors.

To find the eigenvectors, we need to solve the equation Mz = 0 since eigenvalues are all zero.
Note that the system of equations

-1 1 0
-1 0 1|jz=0
-1 0 1
is equivalent to that of
-1 10
0 -1 1{x=0
0 0 0

Therefore, the general solution is of the form

a
Tr= |(a
[¢

where a is a scalar. This means that we can find only one linearly dependent eigenvector for the
zero eigenvalue. Consequently, M is not diagonalizable.

(6¢): Since there is only one linearly independent eigenvector, Jordan canonical form consists
of one block. Note that

0 -1 1
M?=10 -1 1| and M3=0.
0 -1 1

Next, we solve

1
M2y = |1
1



One possible solution is

Note that

Let

and note that

O~

— —

S - -

— O O

M




