Linear Algebra II

07/04/2014, Monday, 9:00-12:00
$1(10+5=15 \mathrm{pts})$

Consider the vector space \mathbb{R}^{4} with the inner product

$$
\langle x, y\rangle=x^{T} y .
$$

Let $S \subset \mathbb{R}^{4}$ be the subspace given by

$$
S=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
0 \\
0 \\
-1
\end{array}\right]\right\}
$$

(a) Apply the Gram-Schmidt process to obtain an orthonormal basis for S.
(b) Find the closest element in the subspace S to the vector
$\left[\begin{array}{l}a \\ b \\ b \\ a\end{array}\right]$
where a and b are real numbers.

REQUIRED KNOWLEDGE: inner product, Gram-Schmidt process, least squares

Solution:

(1a): Let

$$
x_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad x_{2}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad \text { and } \quad x_{3}=\left[\begin{array}{r}
1 \\
0 \\
0 \\
-1
\end{array}\right]
$$

By applying the Gram-Schmidt process, we obtain:

$$
\begin{aligned}
& u_{1}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \\
& u_{2}=\frac{x_{2}-p_{1}}{\left\|x_{2}-p_{1}\right\|} \\
& p_{1}=\left\langle x_{2}, u_{1}\right\rangle \cdot u_{1} \\
& =\frac{1}{4} \cdot 2\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \\
& x_{2}-p_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right] \\
& \left\|x_{2}-p_{1}\right\|^{2}=\frac{1}{4} \cdot 4=1 \\
& u_{2}=\frac{1}{2}\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right] \\
& u_{3}=\frac{x_{3}-p_{2}}{\left\|x_{3}-p_{2}\right\|} \\
& p_{2}=\left\langle x_{3}, u_{1}\right\rangle \cdot u_{1}+\left\langle x_{3}, u_{2}\right\rangle \cdot u_{2} \\
& =\frac{1}{4} \cdot 2\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right] \\
& x_{3}-p_{2}=\left[\begin{array}{r}
1 \\
0 \\
0 \\
-1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right] \\
& \left\|x_{3}-p_{2}\right\|^{2}=\frac{1}{4} \cdot 4=1 \\
& u_{3}=\frac{1}{2}\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right] .
\end{aligned}
$$

(1b): The closest element in S to x can be found by projection:

$$
p=\left\langle x, u_{1}\right\rangle \cdot u_{1}+\left\langle x, u_{2}\right\rangle \cdot u_{2}+\left\langle x, u_{3}\right\rangle \cdot u_{3}
$$

Thus, we have

$$
p=\frac{1}{4}(a+b+b+a)\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+\frac{1}{4}(a+b-b-a)\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right]+\frac{1}{4}(a-b+b-a)\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]=\frac{1}{2}(a+b)\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Consider the matrix

$$
M=\left[\begin{array}{ll}
9 & -6 \\
5 & -3
\end{array}\right]
$$

By using the Cayley-Hamilton theorem, find a and b such that

$$
M^{5}=a M+b I
$$

REQUIRED KNOWLEDGE: Cayley-Hamilton theorem

SOLUTION:

The characteristic polynomial of M is given by

$$
\operatorname{det}(M-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}
9-\lambda & -6 \\
5 & -3-\lambda
\end{array}\right]\right)=(9-\lambda)(-3-\lambda)+30=\lambda^{2}-6 \lambda+3
$$

It follows from Cayley-Hamilton theorem that

$$
M^{2}-6 M+3 I=0
$$

Then, we have

$$
M^{2}=6 M-3 I=3(2 M-I)
$$

This results in

$$
M^{3}=M M^{2}=3 M(2 M-I)=3\left(2 M^{2}-M\right)=3(2(6 M-3 I)-M)=3(11 M-6 I)
$$

Therefore, we obtain

$$
\begin{aligned}
M^{5} & =M^{2} M^{3}=9(2 M-I)(11 M-6 I) \\
& =9\left(22 M^{2}-23 M+6 I\right) \\
& =9(66(2 M-I)-23 M+6 I) \\
& =9(132 M-66 I-23 M+6 I)=9(109 M-60 I)=981 M-540 I
\end{aligned}
$$

As such, $a=981$ and $b=-540$.

Consider the matrix

$$
M=\left[\begin{array}{rrr}
1 & 2 & 3 \\
-1 & 2 & 3 \\
1 & -2 & 3 \\
1 & 2 & -3
\end{array}\right]
$$

(a) Find the singular values of M.
(b) Find a singular value decomposition for M.
(c) Find the best rank 2 approximation of M.

REQUIRED KNOWLEDGE: singular value decomposition, lower rank approximations

SOLUTION:

(3a): Note that

$$
M^{T} M=\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 16 & 0 \\
0 & 0 & 36
\end{array}\right]
$$

Then, the eigenvalues of $M^{T} M$ are given by

$$
\lambda_{1}=36, \quad \lambda_{2}=16, \quad \text { and } \quad \lambda_{3}=4
$$

and hence the singular values by

$$
\sigma_{1}=6, \quad \sigma_{2}=4, \quad \text { and } \quad \sigma_{3}=2
$$

(3b): Three eigenvectors of $M^{T} M$ corresponding to the eigenvalues λ_{1}, λ_{2}, and λ_{3} can be given by

$$
v_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad v_{3}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

As such, we have

$$
V=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Note that the rank of M is equal to the number of nonzero singular values. Thus, $r=\operatorname{rank}(M)=3$. By using the formula

$$
u_{i}=\frac{1}{\sigma_{i}} M v_{i}
$$

for $i=1,2,3$, we obtain

$$
\begin{aligned}
& u_{1}=\frac{1}{6}\left[\begin{array}{rrr}
1 & 2 & 3 \\
-1 & 2 & 3 \\
1 & -2 & 3 \\
1 & 2 & -3
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{r}
1 \\
1 \\
1 \\
-1
\end{array}\right] \\
& u_{2}=\frac{1}{4}\left[\begin{array}{rrr}
1 & 2 & 3 \\
-1 & 2 & 3 \\
1 & -2 & 3 \\
1 & 2 & -3
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{r}
1 \\
1 \\
-1 \\
1
\end{array}\right] \\
& u_{3}=\frac{1}{2}\left[\begin{array}{rrr}
1 & 2 & 3 \\
-1 & 2 & 3 \\
1 & -2 & 3 \\
1 & 2 & -3
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{r}
1 \\
-1 \\
1 \\
1
\end{array}\right] .
\end{aligned}
$$

The last column vector of the matrix U can be found by looking at the null space of M^{T} :

$$
\left[\begin{array}{rrrr}
1 & -1 & 1 & 1 \\
2 & 2 & -2 & 2 \\
3 & 3 & 3 & -3
\end{array}\right] y=0
$$

By row operations, we obtain

$$
\left[\begin{array}{rrrr}
1 & -1 & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1
\end{array}\right] y=0
$$

This yields, for instance,

$$
y=\left[\begin{array}{r}
-1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Thus, we get

$$
u_{3}=\frac{1}{2}\left[\begin{array}{r}
-1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Finally, the SVD can be given by:

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \\
-1 & 2 & 3 \\
1 & -2 & 3 \\
1 & 2 & -3
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
6 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] .
$$

(3c): The best rank 2 approximation can be obtained as follows:

$$
\begin{aligned}
\tilde{M} & =\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
6 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{rrr}
3 & 2 & 0 \\
3 & 2 & 0 \\
3 & -2 & 0 \\
-3 & 2 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{rrr}
0 & 2 & 3 \\
0 & 2 & 3 \\
0 & -2 & 3 \\
0 & 2 & -3
\end{array}\right] .
\end{aligned}
$$

(a) Let A be a square matrix. Show that

$$
\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}(A)}
$$

(b) Let B be an orthogonal matrix. Find out the singular values of B.
(c) Let C and D be $n \times n$ matrices. Suppose that C is orthogonal. Find out the relationship between the singular values of D and those of $C D$.

REQUIRED KNOWLEDGE: eigenvalues, orthogonal matrices and singular values

SOLUTION:

(4a): Let (λ, x) be an eigenpair of A, that is

$$
A x=\lambda x
$$

Note that

$$
A^{k} x=\lambda^{k} x
$$

Thus, we have

$$
e^{A} x=\left(I+\frac{A}{1!}+\frac{A^{2}}{2!}+\cdots\right) x=\left(1+\frac{\lambda}{1!}+\frac{\lambda^{2}}{2!}+\cdots\right) x=e^{\lambda} x
$$

In other words, if λ is an eigenvalue of A then e^{λ} is an eigenvalue of e^{A}. Since the determinant of a matrix equals to the product of eigenvalues, we have

$$
\operatorname{det}\left(e^{A}\right)=e^{\lambda_{1}} e^{\lambda_{2}} \cdots e^{\lambda_{n}}
$$

where λ_{i} for $i=1,2, \ldots, n$ are the eigenvalues of A. Hence, we have

$$
\operatorname{det}\left(e^{A}\right)=e^{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}}
$$

Since the sum of the eigenvalues of a matrix equals to its trace, we get

$$
\operatorname{det}\left(e^{A}\right)=e^{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}}=e^{\operatorname{tr}(A)}
$$

(4b): Approach 1: The singular values of B are the square roots of the eigenvalues of $B^{T} B$. Since B is orthogonal, $B^{T} B=I$. Hence, all singular values of B are equal to 1 .

Approach 2: Since B is an orthogonal matrix, we have the SVD

$$
B=U \Sigma V^{T}
$$

where $U=B$, and $\Sigma=V=I$. As such, singular values of B are all 1 .
(4c): Approach 1: The singular values of $C D$ are the square roots of the eigenvalues of $(C D)^{T} C D$. Note that

$$
(C D)^{T} C D=D^{T} C^{T} C D=D^{T} D
$$

where the last equality follows from the fact that C is orthogonal. As such, the singular values of $C D$ and D are the same.

Approach 2: Let

$$
D=U \Sigma V^{T}
$$

be an SVD of D. Then, we have

$$
C D=C U \Sigma V^{T}
$$

Since both C and U are orthogonal, so is their product $C D$. Thus, (\star) is an SVD for $C D$. Consequently, D and $C D$ have the same singular values.
(a) Consider the function

$$
f(x, y)=6 x y^{2}-2 x^{3}-3 y^{4}
$$

Find the stationary points of f and determine whether its stationary points are local minimum/maximum or saddle points.
(b) Let

$$
M=\left[\begin{array}{lll}
2 & 1 & a \\
1 & 2 & 1 \\
a & 1 & 2
\end{array}\right]
$$

where a is a real number. Determine all values of a for which M is
(i) positive definite.
(ii) negative definite.

REQUIRED KNOWLEDGE: stationary points, positive definiteness

Solution:

(5a): In order to find the stationary points, we need the partial derivatives:

$$
f_{x}=6 y^{2}-6 x^{2} \quad \text { and } \quad f_{y}=12 x y-12 y^{3}
$$

Then, (\bar{x}, \bar{y}) is a stationary point if and only if

$$
\begin{aligned}
& \bar{y}^{2}-\bar{x}^{2}=0 \\
& \bar{x} \bar{y}-\bar{y}^{3}=0 .
\end{aligned}
$$

The second yields $\bar{y}=0$ or $\bar{x}=\bar{y}^{2}$. If $\bar{y}=0$, then we get from the first $\bar{x}=0$. Hence,

$$
\left(\bar{x}_{1}, \bar{y}_{1}\right)=(0,0)
$$

is a stationary point. If $\bar{x}=\bar{y}^{2}$, then we get $\bar{y}^{4}=\bar{y}^{2}$ from the first. This holds if and only if $\bar{y} \in\{-1,0,1\}$. Thus, we obtain two more stationary points

$$
\left(\bar{x}_{2}, \bar{y}_{2}\right)=(1,-1) \quad \text { and } \quad\left(\bar{x}_{3}, \bar{y}_{3}\right)=(1,1)
$$

To determine the character of these points, we need the second order partial derivatives:

$$
f_{x x}=-12 x, \quad f_{x y}=12 y, \quad \text { and } \quad f_{y y}=12 x-36 y^{2}
$$

For the stationary point $\left(\bar{x}_{1}, \bar{y}_{1}\right)=(0,0)$, we have

$$
H_{(0,0)}=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right]_{(0,0)}=\left[\begin{array}{cc}
12 x & 12 y \\
12 y & 12 x-36 y^{2}
\end{array}\right]_{(0,0)}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Since this matrix has only zero eigenvalues, we cannot determine the nature of the corresponding stationary point.

For the stationary point $\left(\bar{x}_{2}, \bar{y}_{2}\right)=(1,-1)$, we have

$$
H_{(1,-1)}=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right]_{(1,-1)}=\left[\begin{array}{cc}
-12 x & 12 y \\
12 y & 12 x-36 y^{2}
\end{array}\right]_{(1,-1)}=\left[\begin{array}{cc}
-12 & -12 \\
-12 & -24
\end{array}\right]=-12\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

Note that the characteristic equation for the matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$ is given by

$$
(\lambda-1)(\lambda-2)-1=\lambda^{2}-3 \lambda 1=0
$$

Thus, we find the roots as

$$
\lambda_{1,2}=\frac{3 \pm \sqrt{5}}{2}
$$

Note that both these numbers are positive. Since $-12 \lambda_{1,2}$ are the eigenvalues of the Hessian, it is negative definite. This means the corresponding stationary point is a local maximum.

For the stationary point $\left(\bar{x}_{3}, \bar{y}_{3}\right)=(1,1)$, we have

$$
H_{(1,1)}=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right]_{(1,1)}=\left[\begin{array}{cc}
-12 x & 12 y \\
12 y & 12 x-36 y^{2}
\end{array}\right]_{(1,1)}=\left[\begin{array}{rr}
-12 & 12 \\
12 & -24
\end{array}\right]=-12\left[\begin{array}{rr}
1 & -1 \\
-1 & 2
\end{array}\right]
$$

Note that the characteristic equation for the matrix $\left[\begin{array}{rr}1 & -1 \\ -1 & 2\end{array}\right]$ is exactly the same as for the matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$. As such, $H_{(1,1)}$ is negative definite. Therefore, the corresponding stationary point is a local maximum.
$(5 b)(i):$ A symmetric matrix is positive definite if and only if all its leading principal minors are positive. Note that the leading principal minors of M are given by:
$\operatorname{det}(2)=2, \quad \operatorname{det}\left(\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]\right)=4-1=3, \quad$ and $\quad \operatorname{det}\left(\left[\begin{array}{lll}2 & 1 & a \\ 1 & 2 & 1 \\ a & 1 & 2\end{array}\right]\right)=8+a+a-2 a^{2}-2-2=4+2 a-2 a^{2}$.
Then, the matrix M is positive definite if and only if

$$
a^{2}-a-2<0
$$

Since $a^{2}-a-2=(a+1)(a-2)$, we can conclude that M is positive definite if and only if $-1<a<2$.
(5b)(ii): The matrix M is negative definite if and only if $-M$ is positive definite. Since the first leading principal minor of $-M$ is -2 , there are no values of a and b rendering M negative definite.

Consider the matrix

$$
M=\left[\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{array}\right]
$$

(a) Find the eigenvalues of M.
(b) Is M diagonalizable? Why?
(c) Put M into the Jordan canonical form.

REQUIRED KNOWLEDGE: eigenvalues/vectors, diagonalization, Jordan canonical form

Solution:

(6a): Charateristic polynomial of M can be found as

$$
\begin{aligned}
\operatorname{det}(M-\lambda) & =\operatorname{det}\left(\left[\begin{array}{ccc}
-1-\lambda & 1 & 0 \\
-1 & -\lambda & 1 \\
-1 & 0 & 1-\lambda
\end{array}\right]\right) \\
& =\lambda(1+\lambda)(1-\lambda)-1+1-\lambda \\
& =\lambda\left(1-\lambda^{2}\right)-\lambda \\
& =\lambda\left(1-\lambda^{2}-1\right)=-\lambda^{3}
\end{aligned}
$$

Therefore, M has only zero eigenvalues.
(6b): The matrix M is diagonalizable if and only if it has 3 linearly independent eigenvectors. To find the eigenvectors, we need to solve the equation $M x=0$ since eigenvalues are all zero. Note that the system of equations

$$
\left[\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{array}\right] x=0
$$

is equivalent to that of

$$
\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right] x=0
$$

Therefore, the general solution is of the form

$$
x=\left[\begin{array}{l}
a \\
a \\
a
\end{array}\right]
$$

where a is a scalar. This means that we can find only one linearly dependent eigenvector for the zero eigenvalue. Consequently, M is not diagonalizable.
(6c): Since there is only one linearly independent eigenvector, Jordan canonical form consists of one block. Note that

$$
M^{2}=\left[\begin{array}{lll}
0 & -1 & 1 \\
0 & -1 & 1 \\
0 & -1 & 1
\end{array}\right] \quad \text { and } \quad M^{3}=0
$$

Next, we solve

$$
M^{2} v=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

One possible solution is

$$
v=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

Note that

$$
M v=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Let

$$
T=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

and note that

$$
\underbrace{\left[\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{array}\right]}_{M} \underbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]}_{T}=\underbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]}_{T} \underbrace{\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]}_{J} .
$$

